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SECTION 1
INTRODUCTION

Over the last two years there has been a growing interest in a Bayesian ap-
proach to the problem of testing compliance to the threshold test ban treaty (TTBT).
(See Nicholson et al. [1991] and Shumway and Der [1990].) During that same time it
has been pointed out that previous data does furnish some information about the un-
known parameters in the yield estimation problem even though the associated yields
are unknown. For example, since for equal slope parameters, m,(P) — my(Lg) does
not depend on yield, one can estimate the mean and variance of this difference from
data for which the yields are unknown. Typically, the size of such data sets is large
enough to provide excellent estimates of these parameters. This information can then
be used to improve estimates of future yields (See Nicholson et al. [1991]).

Our approach is a modification of the approach suggested by Shumway and
Der [1990]. They have shown that prior information, supplied for example by a panel of
experts, can be useful for improving confidence intervals on the log yield, particularly
when there is little calibration data. Our approach also allows expert opinion to
be used as prior information. In addition, we include the information gained from
previous data for which the yields are unknown, in terms of constraints on the mean
and variance of the difference of the seismic magnitudes.

In this report we investigate the effect of such information on a statistical test
of TTBT compliance by comparing the power and F-number of the test based on two
Bayesian approaches, with and without the constraints. We develop a Bayesian for-
mulation, treating the unknown intercepts and covariance matrix as random variables
for which a joint Bayesian prior may be specified, with and without the constraints on
the prior. The case in which the slopes are also treated as unknown will be discussed
in a subsequent report.

For comparison, we consider a special case in which the covariance matrix
is treated as known, without uncertainty, so that expressions for the power and F-
numbers may be computed analytically. (This assumption is also made by Nicholson
et al. [1991] in their analysis.) A parametric study is performed to assess how the
probabilities of detecting violations depend on the true calibration parameters and
the number of calibration events for which the yields are known. The results show
that when the assumptions of the Bayesian priors (constrained and unconstrained) are
correct, the test based on the constrained Bayesian approach has a greater than or




equal probability of detecting a violation (referred to as the power of the test), at the
same significance level, than the test without the constraints for all cases examined.
The power for the constrained case is particularly greater than the power for the
unconstrained case when little calibration data is available and there is considerable
uncertainty in one of the intercepts.

We also examine the robustness of the two tests when the Bayesian assump-
tions are incorrect. That is, we compare the sensitivity of the power functions and
false alarm rates of the two tests for monitoring a given test site when the a priors
assumptions are incorrect, e.g., when the true intercept parameters are out in the tails
of the joint prior distribution. Analytic expressions are also given for these probabili-
ties. A discussion of the interpretation of the Bayesian tests for monitoring given test
sites is included.

The Bayesian tests are also compared to a test of hypothesis for which all of
the calibration parameters are treated as known, and one for which only the intercepts
are unknown and estimated strictly from data. The former test provides a reference by
which the other tests may be judged. That is, since all of the calibration parameters
are known, this test will have the greatest power for fixed significance level. The
latter test was considered by Hafemeister [1987|. Comparisen with this test allows us
to gauge the usefulness of the a priors information, including that provided by data
for which the yields are unknown.

The remainder of this report is organized as follows. In Section 2 we define
the notation of our model. In Section 3 we develop the Bayesian approach, with and
without the constraints, and in Section 4 we establish a test of compliance based on
these approaches and define the power and the F-number of the test. In Section 5 we
present the results of a power comparison between the constrained and unconstrained
approaches when the appropriate a priori assumptions hold, and in Section 6 we
address the issue of robustness. Finally, in Section 7 we draw some conclusions from
our study concerning the usefulness of our approach for monitoring specific test sites,
and describe future efforts in this area.




SECTION 2
NOTATION

Suppose that there are two seismic magnitudes observed for each event, e.g.,
my(P) and my(Lg). Let

m;; = i-th seismic magnitude of the j-th event

W.

; = log yield of the j-th event.

Then for constants A; and B;, we assume the magnitudes and log yield are related by

mij’—_Ai‘i’ B.'Wj'{'fij; 1=1,2; j"—'l,'-'9n

E[E.','] =0
(1)

Var ¢; = of'.
Cov(el,-, 62,') = P(fl, Gz)Ue.Ue:

We now consider the problem of estimating yield and establishing a compli-
ance test for future events under the following scenario:

The A; and the covariance matrix of €;; are unknown, but sufficient infor-
mation is available to define a joint Bayesian prior for these quantities. There are n
calibration events for wnich the yields are known, and the n + 1 yield is to be esti-
maied. We also assume the slopes are known, and hence w.l.o.g. set B; = B; = 1.
(The generalization to other known values of the slopes is straightforward.)

We will also exploit the information contained in previous magnitude data
for which the associated yields are unknown. We will hereafter refer to these data sets
as “no-yield data.” Let

E[my; —myj| = u (2)

Var(ml,- - mg,') = /\2- (3)




Under the assumption that B, = B, = 1, these quantities are independent of the
yield. For other values of B,, B;, the appropriate yield-independent combination of the
magnitudes is (B,' ‘m,; — By lm,,-). Typically, large no-yield data sets are available
which may be used to provide excellent estimates of 4 and A?. We will assume for
now fthat such data sets are sufficiently large that the estimated values of u and A?
may be considered to be the actual values.

We now define random variables corresponding to the unknown A, and the
covariance matrix of ¢;;:

{a1,82} = joint normal random variates, for which we assume the means, u,,
and u,,, variances, ":. and a:,, and correlation, p,, are given a pri-
ori. The means are taken as the “most likely” values of the A;, and
variances and correlation reflect the “best guess” of the uncertainty

in our knowledge of the A;.

{01.02,p} = joint random variates for which we assume sufficient prior information
is available to completely specify the probability distribution function
(pdf). (Several reasonable pdfs are specified below.) The prior dis-
tribution reflects our uncertainty in the knowledge of O, O, and

P(Cl ’ 62) .
We then define

mij=a;+W;+e; 1=1,2; j=1,...n (4)

We admit that we are abusing the notation here, since m;; in (1) is actually the
“conditional” m,; in (4), i.e., given a; — A, and a; = A;, and we have failed to make
that distinction in our notation. We will also use the same variables a;, 0? and p to
denote the random variables and the values of the random variables. Nevertheless,
this should not introduce any confusion. For example, the variables that appear as
the arguments of the pdf’s below will always represent values of the random variables.
Also, let

a = {01,02}
g = {olaahp}
m, = (mmmm oo My, mzk) ’

where we assume that the associated yields are known for k < n, and unknown for
k=n+1.




SECTION 3
TECHNICAL DEVELOPMENT

3.1 Bayesian Approach.

Consider now the problem of determining the joint distribution f of m; n41
and ms 4 given m,. This distribution will be used to establish a test of compliance.
We may write

f (Mimsismapaliin) = [ fi (Mane1, Mo mer, 8, 017n) dado
(5)
= [ fa(Mine1,maniila, 0, ) fs (3, 01n) dado,

where f; and f3 are functions to be specified. Using Bayes’ law, fs may be expressed
as

h(a,o)L(m,|a,o0)
/ h(a, 0)L(rin|a,0)dade

(6)

fS (87 al'ﬁn) =

where h is the joint prior distribution of a and @, and L is the likelihood function for
the data, i, given values of a and ¢. Note that (m, 41, m2,n+1) is dependent on i,
as defined by (4), since the random vector (a;,a;) is common to both. However, for
fixed values of (a;,4a;), (M1 n+1,M24+1) does not explicitly depend on mi,,. Therefore

J2 (M1 nsr1,Man1]8,0,M,) = fo(Myas1,M2041]a,0). (7)
Assuming (mj,, my;) are bivariate normal, then

1

5—(-1_—,,2) (X: ~2pX,Y: + Ykz)} = Y(mu,ma)  (8)

f1(my, maja,0) = Cexp {-

fork=1,...,n, where




1

C =
2m01024/1 — p?
my — W, —
X, = 1k p— 4
g,
may, - W, —
Y, = 2k L 02

02

Using the fact that for given values of (a,, a;), the conditional (m,;, rriz,-) and (my, mg)
are independent for all 5 # k, it then follows that

L(ﬁi,.la, 0) = kI'-‘I—l d)(mu, mgg). (9)

From (5), (6), (8) and (9), f(mM1.n+1,M2,n41|17,) is completely determined if h(a, o) is
available.

Shumway and Der [1990] have derived this expression for
f(mi1,n41,M2,n41[7,). In their formulation, the slopes are also treated as unknown.
Thus, a in our notation would represent the matrix of intercepts and slopes in their
scheme. We will depart at this point from their approach and consider the impact, on
the corresponding test of hypothesis, of the further assumptions of (2) and (3), where
s and A? are given constants, determined from previous no-yield data.

3.2 The Constrained Prior Distribution.

We impose the constraints (2) and (3) by replacing, in (6), the prior h(a, o)
with a new prior h (a,0). If the mean and variance of the difference are precisely
known, then we may take

h.(a,0) = N h(a,0) 6(a; — a3 — p) 6(0? + 02 — 2p0107 — 2?), (10)

where XN is a normalization constant, and §(z) is the Dirac delta-function of distribu-
tion theory. That is, the prior distribution we will use in (6) is now the constrained




distribution h.(a,o), which represents the original assumptions concerning the dis-
tribution of a and g, i.e., h(a,s), and the additional assumption that the mean and
variance of the difference of the magnitudes are known.

In practice, the mean and variance of the difference of the magnitudes are
not precisely known, and it may be more appropriate to treat these quantities as
distributed. We will assume, however, that the no-yield data sets are sufficiently
large such that using the delta-functions represents a reasonable approximation. This
assumption allows us to explore the maximui:: benefit of using no-vield data.

The joint prior distribution h(a,#) must still be specified. There are several
joint prior distributions that are worth investigating. Shumway and Der [1990] con-
sider a joint prior distribution that is the product of a bivariate normal for a given o,
and an inverted Wishart for #. We will treat the a; as joint normal random variates
independent of o; and p, as is done by Nicholson et al. [1991]. That is, let

(2) ) ok, )]

Reasonable choicer for the prior distribution of ¢ include the Wishart or inverted
Wishart, which are multivariate sampling distributions, or if the o; and p are treated
as independent random variables, one could use the product of independent sampling
distributions (see, for example, Anderson [1958])

§§(N S~V - 1) (12)

p ~ Approximately log normal. (13)

(The sampling distribution for p is rather cumbersome. An expression for this pdf may
be found on p. 68 of Anderson {1958]). The parameters for this pdf are denoted by the
mean, po, and the number of degress of freedom N — 1, which determines the variance.
The parameters u,,, 04, pa, 00;, po and N may be given by a panel of experts.

If the parameters of the joint prior are to be furnished by a panel, it is
reasonable, and technically less tedious, to consider the case where the prior for &
is also given by a joint normal distribution, rather than the sampling distributions.
This joint prior would reflect the panels ability to provide estimates of the a priors
parameters and their uncertainties. Although it is certainly feasible to translate the




uncertainties furnished by a panel into an effective number of degrees of freedom, N,
this choice of prior would alleviate the awkwardness of doing so. If this prior is used,
it would be assumed that the means and variances of the normal distributions for o;
and p are such that the probability that values of these random variables are outside
of their physically acceptable ranges is effectively zero.

3.3 Summary of Technical Developments.

It is useful at this time to review our results to this point. We have shown
that the unconstrained distribution of future magnitudes, given previous calibration
data and prior information, may be given by

f(ml.n+l’ My pi1 M) = /fz (m1nt1, M2 ns1la, o) fs (a,o|ri,) dado, (14)
where f; is given in (8),

h(a, o) L(,|a, o)
/ h(a, o) L(ri,|a, o)dade ’

(15)

fs(a,0|m,) =

L(ri,|a,0) is given in (9), and k(a,o) is specified by (11)-(13).

Analogous expressions may also be given for the constrained distributions,
which we denote with the subscript “c”. Thus, the constrained distributions corre-
sponding to f and fs are denoted by f. and fs., and the constrained prior distibution

is given by
hc(a9’) =N h(a,a) 6(“1 —az — “) 6(03 + 0; — 2p0y0; —~ Az)’ (16)

where the normalization constant N is needed to ensure that h.(a,o) is a density
normalized to unity.

We are almost in a position to develop a test of compliance. First, it is
useful to define a weighted combination of the magnitudes by

Mypiy = TMypyy + (1 - ")mz.nﬂ, (17)




where 0 < r < 1. The marginal distribution of m, ., given a and o, is completely
determined by the joint distribution f; of m; .41 and ma 441, given a and 0. If we
define this marginal distribution by ga(m, n+1/|a,0), it is straightforward to show, using
(8), that

1 1/fm —ra; — (1 —r)a; — W, 2
gz(m'.,ﬂ_lla,a) = = exp [_ ( rn+l 1 ( ) 2 n+l) ] , (18)
O,

V2 2 o,

? = rPo} + (1 — r)%03 + 2r(1 — r)po10;. If we also define g(m, n41|Mi,) to be

the marginal distribution corresponding to the joint distribution f(m n+1, M2 n+1|Mn),
then

where o

9 piliin) = [ dado g3(m, npsla, 0) f(a, o117n). (19)

There is an analogous expression, g., for the constrained marginal distribution. These
are the distributions that will be used to test compliance.




SECTION 4
YIELD ESTIMATION AND TESTING COMPLIANCE

For B, = B, = 1, the log yield may be estimated in terms of the new
weighted magnitude m, 1 by

Yy

Watt = Mypyn — r4; — (1 — 1) A, (20)

where A],Az are estimates of the intercepts. For data only, 31, As may be taken to
be the usual point estimates. Using prior information only, we can take A = B,
and 4; = #s,- When data and prior information are available, the posterior means of
a;,a; are the most natural estimates of the intercepts. The posterior means may be
computed as expectation values of a,, a3 using fs.(a, o|ri,).

We will establish a test of hypothesis based on the magnitude m, .1, and
compute the power and F-number of the test. The power of the test is the proba-
bility of rejecting the hypothesis that the true yield is in compliance with the treaty
threshold. Note that basing the test on the magnitude is equivalent to basing the
test on the AFTAC estimator of the log yield, which is given by (20), using constant
panel estimates u,, and p,, for the unknown intercepts. The critical value of the test
(defined below) in terms of this estimator is shifted by the constant ru,, + (1 — r)u,,
relative to the critical value of the test in terms of the magnitude. The test is of course
unchanged by this constant shift.

Alternatively, an estimate of the log yield, given in terms of the new mag-
nitude and the posterior means of a; and a3, could be used in principle to establish a
test of hypothesis. It is not clear whether this test is significantly different or better
than the test in terms of the magnitude. This test is complicated, however, by the
fact that the distribution of W, , in this case, is unknown. Shumway and Der [1990]
encounter this obstacle in their analysis as well. Assuming unknown slopes in their
work further complicates this matter. Rather than establishing a test of hypothesis
in terms of the estimate of the log yield, they chose to compute confidence intervals
for the new yield considered as a true fixed future observation.

Consider now a 100a% significance level test of the null hypothesis, Hyp :
W < Wr, versus the alternative, Hy : W > Wi, of the form:

10




Reject Hp if mypn41 > Ta, (21)

where Wy is the treaty threshold of the log yield, and T, satisfies

P[m,,,.+1 > T‘,'fﬁn, Wn+l = WT] =aq. (22)

That is, assuming the true yield is at the treaty threshold, the critical value, T,, is
determined such that the hypothesis Hj is falsely rejected only 100a% of the time.
Using (19), (22) is equivalent to

o0
-/;‘ dmr,n+l g(mr,n+llrﬁm Wn+l = WT) = Q. (23)

Once T, is determined, the power of the test is defined to be the probability that the
null hypothesis is rejected, i.e., for fixed T,, the power at W,,; = W, is given by

Power(W,) = P [m, ny1 > Toliin, Woyy = Wy. (24)

The F-number of the test is related to the power. Using the definition given
by Alewine et al. [1988], the F-number is given by

F =10"r"%r, (25)

where Wy is the value of the true log yield at which the power is 0.5. That is, Wp
satisfies the equation

P [m,',H.l > Talf-ﬁrn, W'H-l = WF] = 0.5. (26)

It is important to undersiand that the power functions, computed in this
way, represent the probabilities that the null hypothesis (i.e., the hypothesis that the
yield of the event was in compliance with the treaty threshold) is rejected, only if the
underlying assumptions are valid. That is, the expression in (24) is the true probability
of calling a violation only if the weighted magnitude of the new event is distributed as
in (19) for the unconstrained case, or analogously for the constrained case. Thus, for
example, it is assumed that the intercepts are distributed as in (15). This expression

11




for the unconstrained case, and the analogous one for the constrained case, depend
on the a priori assumptions. For practical monitoring applications these assumptions
may not hold, however, they reflect our best estimation of the unknown calibration
parameters based on a priori information, calibration data and no-yield data (in the
constrained approach). As a result, the actual false alarm rate for monitoring a
particular site may differ from the target value of a. We investigate this issue in more
detail in Section 6.

12




SECTION 5
POWER COMPARISON

In order to assess the impact of imposing the prior information, particularly
the constraints, it is useful to compare the power of the test for the constrained
and unconstrained distributions. We will consider a special case of the formulation
above, by treating the covariance matrix associated with the random errcrs as known,
without uncertainty, so that analytic expressions may be obtained for the power and
F-number. Nicholson et al. [1991] also make this assumption in their analysis. (A
numerical simulation is needed to compute the power for the general case. Details
of the simulation will be contained in a future report.) Consider the following four
100a% significance level tests:

test 1 = a test of hypothesis based on the assumption that the calibratiorn
parameters (intercepts, slopes and covariance matrix) are completely
known. In practice, this test is infeasible, however, it serves as a
reference of the maximum possible power for fixed false alarm rate.

test 2 = a test of hypothesis based on the constrained Bayesian approach,
treating only the intercepts as unknown. (The only constraint used for
this study is the one on the mean of the difference of the magnitudes.)

test 3 = a test of hypothesis based on the unconstrained Bayesian approach,
treating only the intercepts as unknown.
test 4 = a test of hypothesis based on calibration data only, treating only the

intercepts as unknown.

Tests 1-4, of the form (21), may be established by determining the distribu-
tions of m, ,41 under the appropriate assumptions. The expressions for the power, as
computed in the previous section, and in more detail below, are the probabilities of
detecting a violation for fixed false alarm rate, when the assumptions corresponding
to each of the tests are valid. Thus, they represent the optimum power of each test.

For simplicity, and since the covariance matrix is assumed to be known, let
¢ = p(e1, &), 01 = 0., and 03 = 0,,. To establish test 1, note that

mr,n+l - Wn+l ;|

p o~ N(O, l)a (27)

13




where A, = rA; +(1—1)A; and o? = r*o} +(1-r)%0} +2r(1-r)po,0;. (Cf. Alewine et
al. [1988] and Gray and Woodward [1990]). To establish test 4 (previously considered
by Hafemeister [1987]), we first define the usual point estimate of A, by

" 1 n
A = ; z [rmu + (l — r)mu - Wg] . (28)
k=1
It may then be shown that

Myni1 — Wit — 1&
1 1/2
(l + —) o,
n

The distributions of m, 41|, for tests 2 and 3 may be computed using
(8)-(11), (15) and (18) in (19), where L is now treated as a fixed matrix of known
constants. Making these insertions, it is straightforward to show that for the con-
strained case

* ~ N(0,1). (29)

Mrnt1 — Wn+l - A
Vo +02

while for the unconstrained case

© ~ N(0,1), (30)

Mens1 — W1 — A

- = ~ N(0,1), (31)
Vo?+ol
where

2 _ [ s-1 -1,,]°t

o? = [u(5;" + nE")u] (32)
! -1 -1

2 _ rl(za +nk )rl
%= det(Z;! + nE1) (33)

¥ _ -1
A =r'p,+ HX ) B u (34)

u'(£; + nZ u

14




A =Pu+7 (5 4027 nZ (X - p,). (35)

In these expression, we have defined the vectors u' = (1,1), ¢ = (r,1 —7r), r,' =
(1-r,-r), X = (my — W,my — W), g’ = (Bay»Ha,), Where the prime is used to
denote the transpose of a column vector. We have also defined

ag f pO102
L= (36)
por0; 03
0: 1 paaﬂl adz
T, = , (37)
PaGa0a,  Oa,

and £7! and I;! denote their matrix inverses.

Using the distributions of (27) and (29)-(31), the critical values of the four
tests may be obtained as in (23) such that the area under the distributions, to the
right of the critical value, is a. The resulting critical values of the tests are

Twa = Zao,+Wr+ A,

Ty = ZaW*‘ Wr+ A
Za\/m +Wr + A,
Tw = Zaon/1+1/n+Wr+ 4,

where Z, is the 100(1 — a) percentile of N(0,1).

(38)
T3a

The power functions of the tests, at log yield W,, when the appropriate
assumptions are correct, are given by
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POWER(Wo)l = erfc (Za + (WT - Wo)/d’,)

POWER(W,); = erfc (Za + (Wr — Wo)/y/o? + 03)

(39)
POWER(Wy)s = erfc (Z. + (Wr — Wo)/\/o? + 03)
POWER(W,), = erfc (za + (Wr — Wo) /o, /1 + 1 /n) ,
where erfc(z) is the complementary error function given by
erfc(z) = L / T e, (40)
V2r/=z
It may also be shown that the F-numbers of the tests are given by
F = 10%e°r
F = 102,\/03+02
(41)

Fy = 1020\/03+03
F4 —_ lozaa,‘/li»l/n.

Note that although the critical values for tests 2, 3 and 4 depend on the
calibration data, the power functions and F-numbers depend only on the sample size
n, and not on the particular sample. Also, it is straightforward to show that if either
n — 0o Or 0,,,0,, — 0, then 0., 0, — 0.

Since these formulas are somewhat unwieldy, we have computed the power
curves and F-numbers of the four tests for the cases listed in Table 1. We have set
a = 0.025 and Wr = log 150. Figures 1-8 show the resulting power of the four tests
as functions of the true yield, denoted by solid, dashed, dotted and dashed-dotted
curves, respectively. The four frames in each figure show the results for n = 0,1,2,3.
The power cutves of test 4 may be computed only for non-zero values of n. The
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Table 1. List of parametric cases for the power comparison.

Case o £ p Ca, Oa, Pa
1 0.05 0.05 0.5 0.05 0.05 0.0
2 0.05 0.05 0.5 0.05 0.05 0.5
3 0.05 0.05 0.5 0.05 0.10 0.0
4 0.05 0.05 0.5 0.05 0.10 0.5
5 0.05 0.10 0.5 0.05 0.05 0.0
6 0.05 0.10 0.5 0.05 0.05 0.5
7 0.05 0.10 0.5 0.05 0.10 0.0
8 0.05 0.10 0.5 0.05 0.10 0.5

corresponding F-numbers are given in the legends. Note that in Figures 1, 2, 5 and
6, the power curves of tests 2 and 3 are identical.

There are several significant points to make concerning these results:

1. Test 1 is clearly the test with the greatest power in all cases. This is expected
since there is no uncertainty in the calibration parameters.

2. The power of test 2 is greater than or equal to the power of test 3 and, hence,
the F-numbers of test 2 are less than or equal to those of test 3 in all cases.

3. Equality occurs for cases in which the standard deviations of the random errors
and int- :zepts are the same for both magnitudes (e.g., Figures 1, 2 for all values
of n and Figures 5, 6 for n = 0.) Note that for n = 0, the random errors
contribute identically to the power of tests 2 and 3 via 2. For n > 0, Figures 5
and 6 show that the power of test 2 is slightly greater than that of test 3 even
though the uncertainty in the intercepts is the same for both magnitudes.

4. The greatest increase in power of test 2 relative to test 3 occurs when the un-
certainty in one of the intercepts is much larger than the other (e.g., Figures 3,
4, 7, 8). Note that for n > 0 the power of test 3 rapidly converges to that of
test 2 for the cases shown in Figures 3 and 4. Figures 7 and 8 show that the
convergence is slower for cases in which o3 > ;.

5. In all cases, the power curves of tests 2, 3 and 4 converge to the power curve of
test 1 as n increases.
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6. In all cases, test 4 (based only on calibration data) has the least power of the
four tests.

These results show that the optimum power of the constrained test is always
at least as great as that of the unconstrained test. The constraint, based on the no-
yield data, provides the greatest benefit for cases in which there is greater uncertainty
in one of the intercepts. It is not surprising that for equivalent a priors assumptions
regarding the uncertainty in the intercepts, the constrained and unconstrained tests
provided similar results. The power computed for test 2 assumes that a constraint
physically exists and makes use of that information to compute the critical value of
the test. Alternatively, the power computed for test 3 assumes that the difference in
the intercepts is not necessarily a fixed constant and, hence, ignores this information
when computing the critical value of the test. Thus, the power functions of tests 2
and 3 represent the optimum power of each test, but they are being compared for two
physically different situations.

A useful comparison of tests 2 and 3 would be to assume that the magni-
tudes, are distributed as assumed in the constrained case, but only the constrained
approach makes use of that information to set the critical value. This comparison
is more realistic since, in practice, the difference in the intercepts and hence the dif-
ference in the expected magnitudes are given by a fixed constant. The constrained
approach makes use of the no-yield data to determine what this fixed constant is,
while the uncontrained approach does not.

Rather than perform this comparison, for which the Bayesian assumptions
would still differ from the assumptions of test 1, we will examine the case in which
the magnitudes are distributed as assumed in tests 1 and 4, i.e., as in (1), but the
critical values of each test are set as above. The actual probabilities of calling a
violation based on each of the four tests may then be compared under the same test
site conditions. This comparison is contained in the following section.
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SECTION 6
ROBUSTNESS

An important issue regarding the monitoring of a particular test site is the
robustness of the test of compliance to the assumptions that are made in the statistical
methodology. In particular, the test of compliance, based on a Bayesian approach,
depends on the assumed parameters of the prior distribution. It is important to
note that the expression for the power in (24), and the power of the Bayesian tests
computed in the previous section are the true probabilities of calling violations only
if the magnitudes of the new events are distributed as in (19) for the unconstrained
case, or the analogous expression for the constrained case. The expressions, however,
are only estimates of the true distribution which depends on the true, but unknown,
intercept, slope and covariance matrix parameters.

An alternative interpretation of the power of the Bayesian tests is the fol-
lowing. Consider the case where n = 0. Then the power computed above is the true
probability of calling a violation only if the assumed prior is correct, i.e., only if the
intercepts are actually distributed as assumed in the constrained or unconstrained
priors. In this sense, the joint priors may be interpreted as distributions of all possi-
ble test sites. For a particular test site, however, the intercepts are not distributed.
Rather, they have fixed, although unknown values. Thus, the false alarm rate using a
Bayesian approach, for a sequence of events at a particular test site, is not necessarily
a. We refer to the false alarm rate, power and F-number in this case as the “actual”
quantities, “conditional” on the values of the intercepts for the given test site.

Here we assess the robustness of the actual power of the tests based on the
Bayesian approaches. That is, suppose we set the critical value T, as before. We now
want to determine the actual power of the test, conditional on the true values of the
intercepts, A' = (A,;, A;), when the means of the Bayesian prior are not necessarily
equal to them, e.g., we will consider cases in which

Mo, = Ai T co,,, c=0,+%1,+2. (42)

The conditional power is the probability that m, is greater than the critical
value, weighted over the distribution of all possible critical values. Thus,
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POWER(W,|A) = / AT, p|Talfiin, W = Wo| Plm, > T; A, S|W = Wo|,  (43)

where

1 o 1 (Myns1 — Ay — Wair\?
- A, = = / r J—— ( nt ) .
Pm, > T,; A, Z|W = W, Varo. ). dm exp[ 3 p
(44)

It may be shown that the actual power functions of tests 1 and 4 are the same as
those computed in (39). The distributions of the critical values for tests 2 and 3 may
be determined from (32)-(35) and (38). Also, since A, and A, depend linearly on the
randomly distributed mean magnitudes m; and m,, it may be shown that, for tests 2
and 3, T, is distributed as

Ta_I“T
or

~ N(0,1), (45)

where for the constraineu .ase

(“a — A)’E;lu

BTy = E[T2a] = Za\/ o} +ol+Wr+ A + W(Z;T +nZ Yu (46)
2 nu'Z"'u
or,, = Var[Ti| = (47)

[w'(£:* + nE-)u]”’

while for the unconstrained case
B1y, = E|Tsa] = Zafo2 + 03+ Wr + A, +P(2;' + nZ7) 'S (p, — A)  (48)

0%, =Var[Ts,) = nr'(Z]' + nE )1 HE +0E7Y) (49)

In obtaining these expressions, it is assumed that the magnitudes are distributed as in
(1), and YA = A,. No.e that in the constrained case, A; = A, — u and p,, = fq, — #,
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hence, (B, — A)' = (4o, — A1)u' = (4, — A2)u’. This relationship does no* hold fur
the unconstrained case.

Using (43)-(49), the actual power for tests 2 and 3, conditional on A, may
be expressed as

POWER(Wy|A) = erfc (¢.), ' (50)
where

=uT—Ar—'W0

Co = ——— (51)
Vo?+ o3

It is straightforward to show *hat as n — oo, ur, 41, — Za0r + Wr + A, and
0%,.,0%7,, — 0. Thus, in the limit as n — co, the power curves of tests 2 and 3
converg: to that of test 1, and the false alarm rates of tests 2 and 3 approach a. It
may also be shown tuat the same result occurs if g, = A and a,,,0,, — 0.

To illustrate the results, we have plotted the actual power curves of the four
tests as functions of the yield for the cases listed in Table 2. For each of these cases we
have considered five combinations of the prior means of the intercepts listed in table
3.

Table 2. List of parametric cases for the conditional power comparison.

Case oy O p Oa, Oa, Pa
1 0.05 0.05 0.5 0.05 0.05 0
2 0.05 0.05 0.5 0.05 0.10 0
3 0.05 0.05 | 0.5 0.05 0.15 0

Figures 9(a-e)-11(a-e) show the results for these cases. As before, the solid, dashed
and dotted curves represent the power functions of tests 1, 2 and 3, respectively. The
four frames in each figure show the results for n = 0,1,2,3. The actual false alarm
rates achieved by each of the tests are shown in the figure legends. The power curves
of test 1 reprceent the maximum probability of detecting a violation, at a particular
yield, for a fixed false alarm rate. This test is infeasible, however, the performance of
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Table 3. List of prior means used for each of the cases listed in Table 2.

Case (“01 — Al)/aﬂl (“ﬂz - Az)/adz
a o 0
b 0 2
c 0 -2
d 2 2
e -2 -2

the other two tests should be measured by the similarity of the their power curves to
those of test 1.

The significant results of this study are the following:

1. For all cases in which neither of the means of the prior were chosen to be two
standard deviations less than the true intercepts, the power of test 2 is greater
than or equal to that of test 3, i.e., except for those cases labelled by “c” and

“e”,

2. The cases for which the power of test 2 is dramatically better than that of test
3 are those in which u,, = A; + 20,,, particularly if u,, = A,, but even if
Ba, = A} + 20,,. See, for example, Figures 9(b,d)-11(b,d). Also, cases in which
0., is significantly greater than o,, lead to greater relative power of test 2 to
test 3. Compare Figure 9, 10 and 11.

3. The power of tests 2 and 3 are equal if the g,, = d,, and 0, = 0; (provided
n = 0). See, for example, Figures 9a for all values of n and 12a for n = 0.

4. For those cases labelled by “c” and “e”, in which one or both of the means of the
prior were chosen to be two standard deviations less than the true intercepts,
the power of test 3 is greater than that of test 2, but the false alarm rates of
test 3 are also noticeably greater than 0.025. The false alarm rates of test 2 are
greater than 0.025 only for the cases labelled by “e”, but are still considerably
smaller than the false alarm rates of test 3.

5. For the cases examined, the largest actual false alarm rate for test 2 was 0.084
(Figure 9¢), while for test 3 the largest actual false alarm rate was 0.705. After
as few as two calibration events the false alarm rate of test 2 was no greater
than 0.055 for all of these cases.
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6. The power of test 2 (constrained Bayesian) was less than that of the test 4 (cal-
ibration data only), except for cases in which both prior means of the intercepts
were two standard deviations greater than the true intercepts.

These results show that the constrained Bayesian approach is far more ro-
bust than the unconstrained approach. That is, the power curves of test 2 (constrained
Bayesian approach) are far less sensitive to uncertainties in the intercepts and incor-
rect assumptions regarding the prior means of the intercepts. It was much more likely
that test 3 (unconstrained Bayesian approach) had dramatically less power or, al-
ternatively, a false alarm rate that was dramatically too large. For all of the cases
considered here, the power of test 2 was always closer to the target power of test 1
than the power of test 3.

Comparisons to test 4 show that the power of test 2 is greater in all cases,
except those for which both prior means of the intercepts are considerably larger
than the true values. The priors, however, are presummably assigned with sufficient
confidence so that the probability of such an occurance is extremely small (< 2%). In
contrast, if either or both of the prior means were two standard greater than the true
intercepts, the power of test 3 was less than that of test 4.

The study just described was repeated for o, = 0.10, with all of the other
parameters in Tables 2 and 3 the same as before. The results are very similar to those
presented in Figures 9-11. The relative improved performance of test 2 to test 3 was
slightly more pronounced for these cases as it was for the power comparison in Section
5.
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SECTION 7
CONCLUSIONS AND FUTURE WORK

In this report, we have developed a constrained Bayesian approach for es-
timating the yield for a future underground test based on expert prior information,
calibration data (if available) and no-yield data. The approach was formulated for the
case in which the intercepts and the covariance matrix of the random seismic errors
are unknown.

The results of the power comparison in Section 5, treating only the intercepts
as unknown, showed that the test of hypothesis based on the contrained Bayesian
approach is always as good or better than the Bayesian test without the constraint,
and is always better than the test based only on calibration data when the appropriate
Bayesian assumptions hold. The constrained approach is particularly useful for cases
in which the uncertainty in one of the intercepts is relatively large, and little or no
calibration data is available.

The robustness study in Section 6 showed that the constraint, based on the
no-yield data, greatly corrects for poor prior information regarding either or both
intercepts. If the prior means of the intercepts are chosen too small, the false alarm
rate of the constrained approach may exceed 0.025, but will be considerably closer
to the desired value than the false alarm rate of the unconstrained approach. The
actual power of the unconstrained test was greater in these cases, but this test is not
favored because of the high false alarm rate. In all other cases, the actual power of
the constrained test was at least as great as that of the unconstrained test.

If there is no calibration data, the constrained approach is the best of the
methods explored here for testing TTBT compliance. If the experts are confident
that both prior means of the intercepts have not been dramatically underestimated
or overestimated, the power of the constrained approach, for significance level less
than or equal to 0.025, is greater than the approach based only on calibration data,
requiring roughly half as many calibration events to achieve the same F-number as
the latter test.

In the future, a simulation should be performed to compare the power func-
tions of tests similar to tests 2, 3 and 4 above, but also treating the covariance matrix
of the random seismic errors as unknown, which indeed it is. This simulation is near
completion, but we were unable to obtain the results in time for this report. The
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importance of treating the covariance matrix as unknown is illustrated in Figures 12
and 13, which show the power curves of three tests for two different values of o3.
Tests 1 and 2 correspond to tests 1 and 4 above, i.e., treating all of the parameters as
known for the first, and only the intercepts as known for the second. For test 3, the
intercepts and the covariance matrix are treated as unknown, using only calibration
data to estimate them. This test may be based on Student’s t-distributions as shown
by Alewine et al. [1988] and Gray and Woodward [1990].

These figures show that the treatment of the covariance matrix is very im-
portant. In many of the previous figures the power curves of all four tests were not
dramatically different. However, for the realistic case in which the covariance matrix
is treated as unknown, the differences in the tests are expected to be much more
significant. For example, a test based on calibration data alone, and the assumption
of unknown intercepts and covariance matrix, cannot be used unless data for at least
two calibration events are available.

There is still considerable work that can be done to improve our approach.
In the future, we will extend our analysis to treat the case of unknown slopes. This
extension is important if this approach is to have monitoring applications relevant to a
low-yield or comprehensive test ban treaty. We will also explore the effect of relaxing
the assumption that u and A? are exactly known. This is a necessary modification in
order to apply the constrained Bayesian approach to monitoring test sites for which
there is limited no-yield data.
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Figure 11a. Actual power curves of the four tests, as functions of yield, for
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